Combining conditional volatility forecasts using neural networks: an application to the EMS exchange rates
نویسندگان
چکیده
The present paper examines the out-of-sample forecasting performance of four conditional volatility models applied to the European Monetary System (EMS) exchange rates. In order to provide improved volatility forecasts, the four models’ forecasts are combined through simple averaging, an ordinary least squares model, and an artificial neural network. The results support the EGARCH specification especially after the foreign exchange crisis of August 1993. The superiority of the EGARCH model is consistent with the nature of the EMS as a managed float regime. The ANN model performed better during the August 1993 crisis especially in terms of root mean absolute prediction error. © 1999 Elsevier Science B.V. All rights reserved.
منابع مشابه
Assessing the Exchange Rate Fluctuation on Tehrans Stock Market Price: A GARCH Application
This paper empirically investigates the exchange rate effects of Iranian Rial against Dollar (Rial vs.US) on stock prices in Iran. The sample period for the study has been taken from March 20, 2004 to March 20, 2010 using daily nominal exchange rate of Rial /us and daily closing values of Tehran Stock Exchange. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model has been use...
متن کاملA Review of Epidemic Forecasting Using Artificial Neural Networks
Background and aims: Since accurate forecasts help inform decisions for preventive health-careintervention and epidemic control, this goal can only be achieved by making use of appropriatetechniques and methodologies. As much as forecast precision is important, methods and modelselection procedures are critical to forecast precision. This study aimed at providing an overview o...
متن کاملForecasting Conditional Correlation for Exchange Rates using Multivariate GARCH models with Historical Value-at-Risk application
The generalization from the univariate volatility model into a multivariate approach opens up a variety of modeling possibilities. This study aims to examine the performance of the two multivariate GARCH models BEKK and DCC, applied on ten years exchange rates data. Estimations and forecasts of the covariance matrix are made for the EUR/SEK and USD/SEK, whereby the forecasts are used in a pract...
متن کاملDynamic Linkages between Exchange Rates and Stock Prices: Evidence from Iran and South Korea
The main purpose of present study is to analyze the relationship between stock and exchange markets in two Asian countries, Iran and South Korea. A monthly time series of stock price and exchange rate are used over the period 2002: 05 - 2012: 03. The data is collected from the Central Bank of each country and WDI. The calculated stock return and real exchange rate change are used in analysis....
متن کاملInference on Predictability of Foreign Exchange Rates via Generalized Spectrum and Nonlinear Time Series Models
It is often documented, based on autocorrelation, variance ratio and power spectrum, that exchange rates approximately follow a martingale process. Because autocorrelation, variance ratio and spectrum check serial uncorrelatedness rather than martingale difference, they may deliver misleading conclusions in favor of the martingale hypothesis when the test statistics are insigniÞcant. In this pa...
متن کامل